\(\int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx\) [345]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 124 \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{b d} \]

[Out]

-(A-I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d/(a-I*b)^(1/2)-(A+I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))/d/(a+I*b)^(1/2)+2*B*(a+b*tan(d*x+c))^(1/2)/b/d

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3673, 3620, 3618, 65, 214} \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d \sqrt {a-i b}}-\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d \sqrt {a+i b}}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{b d} \]

[In]

Int[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-(((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d)) - ((A + I*B)*ArcTanh[Sqrt[a +
 b*Tan[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d) + (2*B*Sqrt[a + b*Tan[c + d*x]])/(b*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 B \sqrt {a+b \tan (c+d x)}}{b d}+\int \frac {-B+A \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = \frac {2 B \sqrt {a+b \tan (c+d x)}}{b d}+\frac {1}{2} (-i A-B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (i A-B) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = \frac {2 B \sqrt {a+b \tan (c+d x)}}{b d}+\frac {(A-i B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac {(A+i B) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = \frac {2 B \sqrt {a+b \tan (c+d x)}}{b d}-\frac {(i A-B) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}+\frac {(i A+B) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = -\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b} d}-\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b} d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.95 \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=-\frac {\frac {(A-i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{\sqrt {a-i b}}+\frac {(A+i B) \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{\sqrt {a+i b}}-\frac {2 B \sqrt {a+b \tan (c+d x)}}{b}}{d} \]

[In]

Integrate[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-((((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/Sqrt[a - I*b] + ((A + I*B)*ArcTanh[Sqrt[a + b*T
an[c + d*x]]/Sqrt[a + I*b]])/Sqrt[a + I*b] - (2*B*Sqrt[a + b*Tan[c + d*x]])/b)/d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1909\) vs. \(2(104)=208\).

Time = 0.12 (sec) , antiderivative size = 1910, normalized size of antiderivative = 15.40

method result size
parts \(\text {Expression too large to display}\) \(1910\)
derivativedivides \(\text {Expression too large to display}\) \(3997\)
default \(\text {Expression too large to display}\) \(3997\)

[In]

int(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

A/d*(1/2/(a^2+b^2)^(1/2)*(-1/2*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(
d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))+1/2/(a^2+b^2)^(1/2)*(1/2*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+
2*((a^2+b^2)^(1/2)-a)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(
1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))+B*(2/d/b*(a+b*tan(d*x+c))^(1/2)-1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+
b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b/(
a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)+1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2
)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c)
)^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(
2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2
)-2*a)^(1/2))*a^2+1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arc
tan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-3/d*b/(a^2+b^2
)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+
b^2)^(1/2)-2*a)^(1/2))*a^2-2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1
/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a-(a+b*tan
(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b/(a^2+b
^2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)
+2*a)^(1/2)-1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^
2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a-(a+b*tan(d*x+c))^(1/
2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^
2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a
)^(1/2))*a^2+1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)
^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((
2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-3/d*b/(a^2+b^2)^(3/
2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^
(1/2)-2*a)^(1/2))*a^2-2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)-(
2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1706 vs. \(2 (98) = 196\).

Time = 0.30 (sec) , antiderivative size = 1706, normalized size of antiderivative = 13.76 \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(b*d*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a
^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^
4)*b)*sqrt(b*tan(d*x + c) + a) + ((B*a^3 - A*a^2*b + B*a*b^2 - A*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*
B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (2*A^2*B*a^2 - (A^3 - 3*A*B^2)*a*b -
(A^2*B - B^3)*b^2)*d)*sqrt(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 +
B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) - b*d*sqrt(((a^2 + b^2
)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4
)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c)
 + a) - ((B*a^3 - A*a^2*b + B*a*b^2 - A*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B
^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - (2*A^2*B*a^2 - (A^3 - 3*A*B^2)*a*b - (A^2*B - B^3)*b^2)*d)*sqr
t(((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b
^2 + b^4)*d^4)) + 2*A*B*b + (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) - b*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a
^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^
2)*a)/((a^2 + b^2)*d^2))*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) + ((B*a^3 - A*a^2*
b + B*a*b^2 - A*b^3)*d^3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2
*a^2*b^2 + b^4)*d^4)) + (2*A^2*B*a^2 - (A^3 - 3*A*B^2)*a*b - (A^2*B - B^3)*b^2)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt
(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B
*b - (A^2 - B^2)*a)/((a^2 + b^2)*d^2))) + b*d*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*
a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/((a^2 + b^2)*d^2)
)*log((2*(A^3*B + A*B^3)*a - (A^4 - B^4)*b)*sqrt(b*tan(d*x + c) + a) - ((B*a^3 - A*a^2*b + B*a*b^2 - A*b^3)*d^
3*sqrt(-(4*A^2*B^2*a^2 - 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) +
 (2*A^2*B*a^2 - (A^3 - 3*A*B^2)*a*b - (A^2*B - B^3)*b^2)*d)*sqrt(-((a^2 + b^2)*d^2*sqrt(-(4*A^2*B^2*a^2 - 4*(A
^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/((a^4 + 2*a^2*b^2 + b^4)*d^4)) - 2*A*B*b - (A^2 - B^2)*a)/((a
^2 + b^2)*d^2))) + 4*sqrt(b*tan(d*x + c) + a)*B)/(b*d)

Sympy [F]

\[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}}{\sqrt {a + b \tan {\left (c + d x \right )}}}\, dx \]

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)/sqrt(a + b*tan(c + d*x)), x)

Maxima [F]

\[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )}{\sqrt {b \tan \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)/sqrt(b*tan(d*x + c) + a), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 11.28 (sec) , antiderivative size = 2930, normalized size of antiderivative = 23.63 \[ \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{\sqrt {a+b \tan (c+d x)}} \, dx=\text {Too large to display} \]

[In]

int((tan(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(1/2),x)

[Out]

2*atanh((32*B^2*b^2*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(
1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^4) - (4*B*b^3*d^2*(-16*B^4*b^2*d^4)^(1/2
))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4
 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*B^4*b^2*d^4)^(1/2))/((16*B^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4
) - (4*B*b^5*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*B^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) - (4*
B*a^2*b^3*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*B^2*a^2*b^2*d^2*((-16*B^4*b^2*d^4)^(1/2)/(16
*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B^3*a*b^5*
d^5)/(a^2*d^4 + b^2*d^4) - (4*B*b^5*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*B^3*a^3*b^3*d^5)/(a
^2*d^4 + b^2*d^4) - (4*B*a^2*b^3*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*B^4*b^2*d^4)^(1/2)/(
16*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((8*a*b^2*((-16*A^4*b^2*d^4)^(1/
2)/(16*(a^2*d^4 + b^2*d^4)) + (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*A^4*b
^2*d^4)^(1/2))/((16*A^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*A^3*a^2*b^2*d - 16*A^3*b^4*d + (16*A^3*a^4*b^2*d
^5)/(a^2*d^4 + b^2*d^4) + (4*A*a^3*b^2*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*A*a*b^4*d^4*(-16*
A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) - (32*A^2*b^2*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (A^
2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*a^2*b^2*d^3)/(a^2*d^4 + b^2*d^4)
- (16*A^3*b^2)/d + (4*A*a*b^2*d^2*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*A^2*a^2*b^2*d^2*((-16*A^
4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1
/2))/((16*A^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - 16*A^3*a^2*b^2*d - 16*A^3*b^4*d + (16*A^3*a^4*b^2*d^5)/(a^2*d
^4 + b^2*d^4) + (4*A*a^3*b^2*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*A*a*b^4*d^4*(-16*A^4*b^2*d^
4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) + (A^2*a*d^2)/(4*(a^2*d^4 +
b^2*d^4)))^(1/2) - 2*atanh((32*A^2*b^2*((A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2
*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*A^3*b^2)/d - (16*A^3*a^2*b^2*d^3)/(a^2*d^4 + b^2*d^4)
 + (4*A*a*b^2*d^2*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (8*a*b^2*((A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)
) - (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-16*A^4*b^2*d^4)^(1/2)
)/(16*A^3*b^4*d + 16*A^3*a^2*b^2*d - (16*A^3*a^2*b^4*d^5)/(a^2*d^4 + b^2*d^4) - (16*A^3*a^4*b^2*d^5)/(a^2*d^4
+ b^2*d^4) + (4*A*a^3*b^2*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (4*A*a*b^4*d^4*(-16*A^4*b^2*d^4)^
(1/2))/(a^2*d^5 + b^2*d^5)) - (32*A^2*a^2*b^2*d^2*((A^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)) - (-16*A^4*b^2*d^4)^(1/
2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/(16*A^3*b^4*d + 16*A^3*a^2*b^2*d - (16*A^3*a^2*
b^4*d^5)/(a^2*d^4 + b^2*d^4) - (16*A^3*a^4*b^2*d^5)/(a^2*d^4 + b^2*d^4) + (4*A*a^3*b^2*d^4*(-16*A^4*b^2*d^4)^(
1/2))/(a^2*d^5 + b^2*d^5) + (4*A*a*b^4*d^4*(-16*A^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*((A^2*a*d^2)/(4*(a^2
*d^4 + b^2*d^4)) - (-16*A^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)))^(1/2) - 2*atanh((8*a*b^2*(- (-16*B^4*b^2*
d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-
16*B^4*b^2*d^4)^(1/2))/((16*B^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*b^5*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^
5 + b^2*d^5) + (16*B^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^2*b^3*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 +
 b^2*d^5)) - (32*B^2*b^2*(- (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d
^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B^3*a*b^3*d^3)/(a^2*d^4 + b^2*d^4) + (4*B*b^3*d^2*(-16*B^4*b^2*d^
4)^(1/2))/(a^2*d^5 + b^2*d^5)) + (32*B^2*a^2*b^2*d^2*(- (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) - (B^
2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B^3*a*b^5*d^5)/(a^2*d^4 + b^2*d^4) +
(4*B*b^5*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5) + (16*B^3*a^3*b^3*d^5)/(a^2*d^4 + b^2*d^4) + (4*B*a^
2*b^3*d^4*(-16*B^4*b^2*d^4)^(1/2))/(a^2*d^5 + b^2*d^5)))*(- (-16*B^4*b^2*d^4)^(1/2)/(16*(a^2*d^4 + b^2*d^4)) -
 (B^2*a*d^2)/(4*(a^2*d^4 + b^2*d^4)))^(1/2) + (2*B*(a + b*tan(c + d*x))^(1/2))/(b*d)